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An expeditious and concise method has been described for the synthesis of ailanthoidol through conver-
gent route starting from vanillin. The protocol involving intramolecular Wittig as a key reaction afforded
ailanthoidol in overall high yield.
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2-Aryl-substituted benzofurans such as ailanthoidol and its
structural analogues belong to neolignan family.1 This class of com-
pounds is known for various biological properties such as antiviral,
anticancer, antiproliferative, antioxidative, anti-inflammatory, anti-
fungal and immuno-suppressive.2a,2b Recently, some groups have
reported the synthesis of ailanthoidol and its analogues.2,3 For
example, a synthesis reported by Chern et al. involves cyclization
of internal alkyne through oxymercuration using mercury acetate
in acetic acid for the generation of benzofuran core of ailanthoidol
(Scheme 1).2a,2b Another synthesis by Bates et al. employed the
palladium-catalyzed Sonogashira coupling followed by the base-
mediated cyclization of alkyne intermediate starting from 5-iodova-
nillin.2c The palladium-catalyzed Stille couplings were involved to
introduce 2-aryl group and for the chain extension of benzofuran
core, reported by Lee and co-workers.2d The 2-bromobenzofuran
needed for Stille couplings was derived from 5-bromo-2-hydroxy-
3-methoxybenzaldehyde. Other methods involve palladium-cata-
lyzed cyclization,2e benzoannulation2f and cuprous acetylide cou-
pling3a–c along with other procedures3d,3e to generate benzofuran
skeleton. However, some of these methods despite being useful for
the synthesis of ailanthoidol also suffer from the use of toxic tin re-
agents, mercuric reagents and cumbersome procedures. Given the
importance of ailanthoidol and its structural analogues in medicinal
chemistry, we describe here an alternate, concise and convergent
synthesis of ailanthoidol starting from vanillin.

Our approach was based on the utilization of repetitive aro-
matic nucleus of ailanthoidol as precursor for its synthesis.
ll rights reserved.
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Thus, vanillin was viewed as a suitable structural precursor for
the convergent synthesis of benzofuran core using intramolecular
Wittig as the key reaction. The retro-synthetic analysis conceived
for ailanthoidol is illustrated in Scheme 1. As given, benzofuran
skeleton could be easily processed through intramolecular Wittig
reaction of phosphonium salt 3 and acid chloride 4. The phospho-
nium salt in turn could be obtained from functionalized benzyl
chloride 5. The desired benzyl chloride and acid chloride could
be easily prepared from vanillin 6.

Although, the intermolecular Wittig reaction of phosphorane 2
for chain extension of the benzofuran core was employed befor-
OMeOMe

5 6 (Vanillin)

Scheme 1. Retrosynthetic analysis of ailanthoidol
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Scheme 3. Preparation of benzyl-protected acid chloride 10. Reagents and condi-
tions: (a) BnBr, K2CO3, DMF, rt, 5 h; (b) H3NO3S, NaClO2, H2O, rt, 12 h; (c) SOCl2,
DCM, 1H-benzotriazole, rt, 1 h.
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Scheme 4. Synthesis of ailanthoidol. Reagents and conditions: (a) (i) CHCl3,
pyridine, reflux 2 h; (ii) Et3N, reflux 6 h; (b) compound 2, CH2Cl2, 0 �C, 3 h and rt,
10 h; (c) TiCl4, CH2Cl2, rt, 5 h; (d) LiAlH4, AlCl3, THF, rt, 4 h.

Table 1
Optimizing conditions for 12a–c
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Entry 2 (equiv) Solvent/temp/time E/Z (12) Yield 12 (%)
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e,2a,2b intramolecular Wittig for the generation of benzofuran core
was not adopted in the synthesis of ailanthoidol. It is to be noted
that synthetically intramolecular Wittig reaction4 provides a facile
approach for the generation of benzofuran skeleton and has been
applied before in several syntheses.5 Despite this, the convergent
approach from vanillin in combination with intramolecular Wittig
as illustrated above was not realized so far in ailanthoidol synthe-
sis. If adopted this is expected to provide much simplified route for
the synthesis of ailanthoidol in comparison with some of the
known methods.2 So, our synthetic efforts to obtain ailanthoidol
are described below.

The functionalization of vanillin to benzyl derivative 5 (Scheme
2) through direct halomethylation was attempted initially. The
reactions using (i) gaseous hydrogen bromide in acetic acid in
the presence of paraformaldehyde6a,6b (ii) with formaldehyde in
concd hydrochloric acid6c were not effective to provide benzyl
chloride directly from vanillin. Hence, we have followed the proce-
dure6d involving initial aminomethylation to 7 and its further
transformation to benzyl chloride 5. These steps afforded high
yields in a facile manner. The benzyl chloride was then converted
to the phosphonium salt 3.

Next, the synthesis of acid chloride 10 was accomplished from
vanillin as given in Scheme 3. The phenolic group in vanillin 6
was first protected as its benzyl ether 8. Oxidation of 8 was carried
out using sodium chlorite to obtain the corresponding acid 9. This
was further converted to its acid chloride derivative 10 smoothly in
quantitative yield.

With the two important intermediates phosphonium salt 3 and
acid chloride 10 in hand, intramolecular Wittig reaction4c was then
performed to generate the benzofuran core of ailanthoidol (Scheme
4).

The Wittig reaction of phosphonium salt with acid chloride in
the presence of pyridine followed by the treatment of triethyl-
amine under heating condition afforded 2-arylbenzofuran skeleton
11 in high yield.7 The notable feature of this step is that the formyl
group present in phosphonium salt 3 was not protected and the
intramolecular Wittig reaction afforded the selective coupling to-
wards benzofuran product.

Next, the chain extension of benzofuran core 11 was carried out
using intermolecular Wittig reaction with phosphorane 2. In our
initial attempts, this reaction afforded a cis–trans mixture of ole-
finic ester 12. To avoid this and to obtain pure trans-olefinic ester,
we have studied the reaction under different solvent and temper-
ature conditions as they are known to have a role in selectivity.8

From Table 1, the reaction in toluene,9a tetrahydrofuran2b and
dichloromethane9b solvents afforded a mixture of both cis- and
trans-olefinic esters in different amounts (Table 1, entries 1–7).
However, in dichloromethane solvent at 0 �C initially followed by
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Scheme 2. Preparation of phosphonium salt 3. Reagents and conditions: (a)
Me2NH, HCHO, ethanol, reflux for 0.5 h and rt, 24 h; (b) (i) Ac2O, reflux 24 h; (ii)
conc. HCl, rt 1.5 h; (c) PPh3, toluene, reflux 4 h.

1 1.5 Toluene, 60 �C,12 h 68:32 50
2 1.5 Toluene, rt 66:34 90
3 1.2 THF, �78 �C, 1 h; rt,3 h 62:38 34
4 1.2 THF, �78 �C, 1 h; 0 �C, 3 h 66:34 53
5 1.2 THF, �78 �C, 3 h 97:3 28
6 1.2 THF, �78 �C, 6 h 84:16 39
7 1.2 DCM, rt, 12 h 99:1 75
8 1.2 DCM, 0 �C, 3 h; rt, 10 h 100:0 99

Conditions: (a) compound 11 (0.3 mmol, 1 equiv), phosphorane 2, solvent (5 mL).
(b) Isolated yields. (c) E/Z ratio of the isolated product 12 was determined by HPLC.
room temperature stirring, the reaction afforded trans-olefinic es-
ter 12 quantitatively (Table 1, entry 8).10 Next, debenzylation of
the pure trans-ester was carried out with TiCl4 to afford olefinic es-
ter 13.11 This ester was further subjected to LiAlH4/AlCl3 reduction
to give directly ailanthoidol 1 in high yield.12 The present synthesis
starting from phosphonium salt 3 and acid chloride 10 (Scheme 4)
afforded overall 61% yield of ailanthoidol.
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In conclusion, some highlights of the present synthesis are (a) it
involves a convergent route using intramolecular Wittig reaction;
(b) efficient utilization of commercially available vanillin as its acid
chloride and phosphonium salt derivatives has simplified the over-
all synthesis; (c) only one benzylic protection was employed
throughout the synthesis; (d) majority of the steps were high
yielding and by routinely used reagents. So, we have demonstrated
an expeditious, convergent and concise synthesis of ailanthoidol by
employing precursors derived from vanillin using intramolecular
Wittig as the key reaction.
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